
An exact and
O(1) time heaviest and lightest hitters algorithm for sliding-window data streams

Remous-Aris Koutsiamanis and Pavlos S. Efraimidis
Department of Electrical and Computer Engineering

Democritus University of Thrace
University Campus, 67100 Xanthi, Greece

{akoutsia,pefraimi}@ee.duth.gr

Abstract—In this work we focus on the problem of finding
the heaviest-k and lightest-k hitters in a sliding window data
stream. The most recent research endeavours [1] have yielded
an e-approximate algorithm with update operations in constant
time with high probability and O(1/e) query time for the heavi-
est hitters case. We propose a novel algorithm which for the first
time, to our knowledge, provides exact, not approximate, results
while at the same time achieves O(1) time with high probability
complexity on both update and query operations. Furthermore,
our algorithm is able to provide both the heaviest-k and the
lightest-k hitters at the same time without any overhead. In this
work, we describe the algorithm and the accompanying data
structure that supports it and perform quantitative experiments
with synthetic data to verify our theoretical predictions.

Keywords-Data Mining, Continuous Queries, Heaviest
Hitters, Lightest Hitters, Data Streams, Sliding Window,
On-line Algorithms

I. INTRODUCTION

The problem of finding the heaviest hitters, in its simplest
form, is the problem of finding which category of items in a
long succession of them is the most frequent one. This problem
has been studied extensively in the last decade. The main
reason for this is that a number of applications, some of them
quite pervasive, need to solve it to provide enhanced services.
The first application, and the one that mainly motivated this
work, is network traffic monitoring (and shaping) on Internet
routers. Being able to tell at any moment in time which set
of packets is the most frequent passing through a router helps
in both being able to tell what may be causing problems
and subsequently resolving these problem in a “fair” manner
towards those not contributing to the problem. Another
application is financial data streams, where it is useful, for
example, to know which stocks are showing the most mobility.
Other applications include sensor networks, behaviour analysis
on websites and trend tracking of hot topics.

The problem was first posed by Moore in 1980 and together
with Boyer they presented the solution (in [2]) for finding the
majority hitter in the basic version of the problem, i.e., non-
window-based data streams. The basic heaviest hitters problem
consists of a data stream where at each moment in time one
item, which belongs to some itemset, arrives for processing.
The goal is to be able to provide a list of the itemsets whose

item counts are above a given θ threshold. Given the unbounded
number of itemsets and length of the data stream, this cannot
be achieved without unbounded memory. As a result, all of the
proposed solutions for this problem have provided approximate
results. This problem was studied and approximate solutions
were proposed much later and concurrently by [3], [4].

Since, a significant body of work has been performed on
both the basic problem and on its numerous variations. A good
presentation of this work can be found in [5], [6]. The variant of
the basic problem addressed in this work stems from the obser-
vation that only a section of the whole history of the data stream
may be interesting. Usually, the most recent items are consid-
ered to be more important. This is one of the most common and
arguably one of the most useful of these variations: finding the
heaviest (and lightest) hitters in a sliding-window data stream.

In the sliding window model at each moment in time a
constant number of items participate in a window over the
data stream. This window always contains the most recent Q
items. This scenario resembles the operation of a queue with
an upper limit on its capacity. As items arrive to be processed
they are inserted at the end of the queue and as items are
processed they are removed from the front of the queue.

All the algorithms proposed for both the basic problem and
the sliding window variation have in common the requirement
that they be able to operate on-line. This entails being able to do
only one pass over the data, i.e., each arriving item may be ex-
amined only once by the algorithm. This is usually called an up-
date operation and the complexity of this operation must be con-
stant time. Furthermore, querying for the heaviest hitters must
also be as fast as possible, ideally proportional to the number
k of the heaviest or lightest hitters that we request to be found.

The novelty of our algorithm is twofold, featuring for the
first time, to our knowledge, the ability:

1) To provide exact results in the query operation and at
the same time maintain constant time update and query
operations.

2) To provide not only the heaviest but also the lightest
hitters in the sliding window with the same performance
and no overhead.

In the following sections we first describe the abstract data type



Table I
THE HL-HITTERS ABSTRACT DATA TYPE

Operation Input Output Description

Initialize − − Initializes the ADT
Append ItemSet − Records a new item

into the counts
Expire ItemSet − Removes an item

from the counts
QueryHeaviest k: Int Array[k] Gets the heaviest-k

ItemSets
QueryLightest k: Int Array[k] Gets the lightest-k

ItemSets

of HL-HITTERS and then the building blocks out of which
it is constructed. We then describe the data structure itself and
the algorithms which implement the HL-HITTERS operations.
Subsequently, we present an experimental evaluation of the
proposed solution and discuss its results. Finally, we propose
some interesting possible extensions to this work.

II. ABSTRACT DATA TYPE

In order to provide an accurate description of our algorithm
and the accompanying data structure we describe here its
interface. The abstract data type which we define supports
the operations shown in Table I. All the operations in our
implementation have constant time complexity.

A. Building Blocks

To implement the data structure we use common basic
building blocks. More specifically, we use exactly one array
of fixed size, one doubly linked list and one hash table. With
each of these data structures we only use the constant time
operations. Thus, for example, we never iterate over the nodes
of the linked list to reach a sought entry, rather we keep
references to the node itself. We will proceed by describing
exactly which operations will be used on each data structure
and its time complexity.

1) Array: The array must be of size Q, the same as the
size of the window, and its size remains constant during the
execution of the algorithm. We only perform the operations
Get and Set on the array, which execute in constant time.
The elements of the array are never iterated over.

In the implementation for our experiments we used the
standard vector provided by the C++ STL (Standard Template
Library ) std::vector class.

2) Doubly-linked list: The linked list starts out empty and as
the algorithm executes nodes are added and removed. We only
use the Head and Tail fields of the doubly-linked list to access
the respective nodes in constant time. As far as the inserts and
deletes are concerned, they are always executed with respect to
a reference node and as such are constant time as well. To be
more specific, InsertBefore and InsertAfter require
two arguments: the new node to insert and a reference node be-
fore or after which to insert the new node. Similarly, Delete

requires a direct reference to the node to delete. Furthermore,
the maximum number of nodes is known a priori to be Q,
and thus we can eliminate the overhead of dynamic memory
allocation for the nodes by using a preallocated node pool.

In the implementation for our experiments we used
the standard doubly-linked list provided by the C++ STL
std::list class.

3) Hash-table: In the HL-HITTERS data structure the id
of each itemset with at least one item in the window, is stored
in a dynamic dictionary. A hash-table is used to implement
the dynamic dictionary. Hashing is commonly assumed
to require O(1) amortized time for the operations Get,
Set and Delete or at least for one of these operations.
However, there are at least two examples of hashing schemes
which achieve worst case O(1) time with high probability
(whp): the early work of [7] and the recent algorithm of [8].
Consequently, we can assume that an efficient, O(1) hashing
scheme can be used in the HL-HITTERS data structure.

There is an additional reason why we can assume O(1) time
for our hashing scheme. Given that our original motivation
were router queues, we can assume that the maximum size of
a window does not typically exceed 1000 items (packets in this
case). The most common values are a few hundred items. This
fact admits us the luxury to run the hashing data structure with a
very low load factor. For example, even a hash table with 1 mil-
lion entries would not be a significant cost for a modern router.

The question of which of the published hashing schemes
offers the optimal trade-off between space redundancy
and worst case bounds could be an interesting problem
to investigate. However, for our purposes, any lightweight
hashing scheme will be sufficient if sufficient memory is
provided. Moreover, for our main motivation application,
special hardware-based memory is available in many routers
which can achieve de-amortized O(1) performance [9].

Based on the above arguments, we plausibly assume that
we can employ an efficient O(1) whp hashing scheme for our
data structure in a modern network router. Additionally, we
believe that the arguments used for the router case can apply to
other applications of window-based heaviest and lightest hitter
problems. In the implementation used for the experiments
of this work, we used chained hashing provided by the C++
boost::unordered_map class[10].

B. Data Structure

We now proceed to describe how the data structure is
composed out of the basic building blocks. An overview of
the layout used is presented in Figure 1.

Before proceeding with the description of the data structure
further, we need to describe two types of simple record-like
structures which are used:

• CountNode, which is the type of the list node used in
the doubly-linked list. The data stored (besides the Previous
and Next fields) is an integer named Count and the identifier
of an ItemSet named ItemSet.



Head

Count (Integer)
ItemSet (ItemSet)

(CountNode)

is1
1

ItemSets (HashTable)

Key (ItemSet)

is1

is2

is3

is4

Value (CountNode Ref)

ADT Structure

Counts (DoublyLinkedList)

Count (Integer)
ItemSet (ItemSet)

(CountNode)

is3

2

Count (Integer)
ItemSet (ItemSet)

(CountNode)

is4

2

Tail

Count (Integer)
ItemSet (ItemSet)

(CountNode)

is2

4

CountRanges (Array)

Index (Integer) Element (CountRange)

First (CountNode Ref)
Last (CountNode Ref)1

2

3

4

...

N First (CountNode Ref)
Last (CountNode Ref)

First (CountNode Ref)
Last (CountNode Ref)

First (CountNode Ref)
Last (CountNode Ref)

First (CountNode Ref)
Last (CountNode Ref)

Legend

Reference/Pointer to a CountNode
from a ItemSets Value Entry

Reference/Pointer to a CountNode
from a CountRange First/Last Field

Figure 1. The ADT’s structure.

• CountRange, which has two fields, named First and
Last, both of which are references to a doubly linked
list node of type CountNode. This structure is meant
to store the endpoints of a sub-range of the Counts
DoublyLinkedList. To support this, it supports two
simple operations: Insert (a new node in range) and
Remove an existing node from the range. Both are O(1)
operations as they manipulate only the First and Last fields
and do not iterate over the nodes in the range.

1) Layout of the Data Structure: Itemsets that have no items
in the window, i.e., a count of zero, will not have any entries in
any of the data structures. Conversely, each itemset which has
at least one item in the window, i.e., a count ≥ 1, will have
one entry in the ItemSets HashTable. Additionally, for each
itemset, there will exist one node of type CountNode in
the Counts DoublyLinkedList, with a Count field cor-
responding to its exact count of items in the window. Finally,
for each group of itemsets which have the same item count
there will be one entry in the Ranges Array, in the position
of the array which is equal to the itemset group’s count.

C. Algorithms

We now present the operations which are supported by the
data structure using pseudo-code and describe their operation
and computational complexity in detail.

Algorithm 1 The Initialize operation on HL-HITTERS
1: procedure Initialize
2: ItemSets ← new HashTable
3: Counts ← new DoublyLinkedList
4: Ranges ← new Array
5: end procedure

1) Initialization: The Initialize operation is shown
in Algorithm 1. While its functionality is simply to initialize
the ItemSets hash table, the Counts doubly linked list and the
Ranges array, it is useful nevertheless to illustrate that initial-
ization is straightforward and that only memory allocations
are performed.

Algorithm 2 The Append operation on HL-HITTERS
1: procedure Append(itemset: ITEMSET)
2: cn ← cn′ ← null
3: if itemset ∈ ItemSets then
4: cn ← ItemSets.Get(key:itemset)
5: cn′ ← Ranges.Get(index:cn.Count).Last.Next
6: Ranges.Remove(node:cn)
7: Counts.Remove(node:cn)
8: cn.Count ← cn.Count + 1
9: Counts.InsertBefore(before:cn′, ins:cn)

10: Ranges.Insert(node:cn)
11: else
12: cn ← new COUNTNODE(ItemSet:itemset, Count:1)
13: Counts.InsertBefore(before:Counts.Head, ins:cn)
14: Ranges.Insert(node:cn)
15: ItemSets.Set(key:itemset, value:cn)
16: end if
17: end procedure

2) Append: In Algorithm 2 we present the Append
operation. It receives the itemset of the item which is to
be appended as a parameter. The itemset is looked up in
the ItemSets hash table. If it is found, then the itemset is
already being counted, i.e., has other items in the window,
and therefore its count must be increased by one. If not, then
it is a new itemset, i.e., it has no other items in the window,
and thus must be recorded with a count of one.

For the case of being already counted, only the Counts and



the Ranges structures will be modified. The idea is to move the
count node corresponding to the itemset to the position in the
Counts linked list where it will be the first linked list node with
the new count. In order to do this, the count node of the itemset
is looked up via the Get operation on the hash table and a
reference to it is stored in cn. Before removing the cn node from
the list, the position in the linked list where it will be moved to
is recorded in cn′, with help from the Ranges Last field. This
will point to the immediately next linked list node after the last
node with the old count. Subsequently, the count node cn is re-
moved from the linked list and the corresponding Ranges count
range entry is updated with the Remove operation. Finally,
the cn node is inserted in the linked list before the cn′ node
and the new Ranges count node entry is updated to include it.

For the case of not being already counted, all of the structures
will be modified. A new count node will be created to hold the
count for the new itemset. Since allocating a new object on
the heap may not be O(1), we can take advantage of the fact
that the maximum number of itemsets is Q, as explained in
Section II-A2, and as such we can just take out a preallocated
count node out of a preallocated pool in O(1). This node is
then inserted in the position of the Counts linked list indicated
by the First field in the first count range entry of the Ranges
array and then it is recoded in the same count range entry.
Finally, the itemset hash table is updated by creating an entry
that maps the new itemset to the count node which was created
previously using the Set operation.

Algorithm 3 The Expire operation on HL-HITTERS
1: procedure Expire(itemset: ITEMSET)
2: cn′′ ← null
3: cn ← ItemSets.Get(key:itemset)
4: cn′ ← Ranges.Get(index:cn.Count).First.Previous
5: Ranges.Remove(node:cn)
6: Counts.Remove(node:cn)
7: cn.Count ← cn.Count - 1
8: if cn.Count ≥ 1 then
9: if cn′ 6= null and cn′.Count = cn.Count then

10: cn′′ ← Ranges.Get(index:cn′.Count).First
11: Counts.InsertBefore(before:cn′′, ins:cn)
12: else
13: Counts.InsertAfter(after:cn′, ins:cn)
14: end if
15: Ranges.Insert(node:cn)
16: else
17: delete cn
18: ItemSets.Delete(key:itemset)
19: end if
20: end procedure

3) Expire: In Algorithm 3 we present the Expire opera-
tion. It receives the itemset of the item which is to be removed
as a parameter. The itemset is looked up in the ItemSets hash
table via the Get operation and the reference to the count
node in the Counts linked list representing it is stored in cn.

Since the count of the itemset will be decremented by one,
we need to move the cn count node to the position in the Counts

linked list where it will be the first linked list node with the new
(old minus one) count. Similarly to the Append operation,
before removing the cn node from the list, the position in
the linked list where it will be moved to is recorded in cn′,
with help from the Ranges First field. This will point to the
immediately previous linked list node after the first node with
the old count. Subsequently, the count node cn is removed from
the linked list and the corresponding Ranges count range entry
is updated with the Remove operation. The count node Count
field is decremented by one. If the count has not reached zero a
check is made to see whether the position to be moved is valid:

• The reference in cn′ must be not null, which would indicate
that the previous count range was the first in the linked
list, and

• the count of the cn′ referenced node must be the same as
the new count of the moving node, i.e., the target count
node must belong to the correct count range.

If this check succeeds, the new corresponding Ranges count
range entry is fetched with the Get operation. Its First
field is set as the new cn′′ insertion position. Afterwards the
moving node is inserted there. If the check fails, then there
is no CountRange entry in the Ranges array corresponding
to the new count and the count node is inserted right where
the original cn′ reference pointed to.

In both cases, the moving count node will be inserted in the
Ranges entry with the new count using the Insert operation.

If the new count after decrementing by one is zero, the
count node is deleted. If a preallocated pool was used it is
returned to the pool in O(1). Finally, the itemset hash table
is updated by deleting the entry that maps the itemset to the
count node which was previously deleted.

Algorithm 4 The Query Heaviest ↔ Lightest op-
eration on HL-HITTERS

1: function QueryHeaviest(k: INTEGER)
2: results ← new ARRAY[k]
3: cn ← Counts.Tail ↔ Counts.Head
4: i ← 1
5: while i≤k and cn6=null do
6: results[i] ← cn.ItemSet
7: cn ← cn.Previous ↔ cn.Next
8: i ← i+1
9: end while

10: return results
11: end function

4) Query: In Algorithm 4 we present the
QueryHeaviest and the QueryLightest operations
simultaneously. The basic algorithm is the same; only the
start of the iteration and its direction is different. In the
algorithm, the left side of the ↔ symbol corresponds to
the QueryHeaviest operation while the right side to the
QueryLightest operation.

The algorithm receives the threshold k as a parameter.
Initially, a new results array of size k is created to hold the



results. In some cases, there may be less than k itemsets
available, therefore a number of positions at the end of the
array will have null entries.

The count node reference cn is set to point to the last (for
QueryHeaviest) or the first (for QueryLightest) node
in the Counts linked list via its Head or Tail fields. Afterwards,
an iteration is performed up to k times. In each step, the current
itemset stored in the node referenced by cn is stored in the cur-
rent (the i-th) index of the array. Finally, the result is returned.

The whole operation makes up to k iterations, at each
one adding a different itemset to the result. This makes this
operation have a time complexity of O(k) and as such is
constant time as well. The operation of the query algorithm
can easily be extended without changing the computational
complexity to also return the actual count of each itemset
along with each itemset. In addition it is possible instead
of specifying a k parameter to return all the itemsets with
the highest/lowest count. To implement this, retrieve the
Tail/Head count node of Counts, get the highest/lowest count,
access the Ranges entry corresponding to that count and
get the range of count nodes between the First and Last
fields with the max/min count. This algorithm’s computational
complexity will depend on the number of itemsets which
will be the max/min count. As it is possible to have Q
itemsets each with a count of one, this algorithm will have a
worst case complexity of O(Q). However, in practice in many
applications this will seldom be the case. Another extension
would be to return the heaviest-θ/lightest-θ hitters, where
θ is relative, expressed as a proportion of the window size
(e.g. θ= 10%). However, here the QueryHeaviest and the
QueryLightest operations will have different complexities.
Since there is an upper bound on the number of itemsets which
can have a frequency more than or equal to θ equal to 1/θ,
one can just execute QueryHeaviest with k = 1/θ and
the complexity will be as originally O(k). However, no such
bound exists for the QueryLightest case, and therefore its
worst case complexity will be O(Q). Finally, if one is willing
to accept an O(Q) worst case complexity it is possible to
create cumulative versions of both the original and the relative
version of the query operations, where the k or θ parameters
denote the cumulative count or proportion of the window. This
would return the first itemset whose counts together add up to
the specified threshold.

D. Space Complexity

The space complexity of the HL-HITTERS data structure
can be fully derived and is exclusively dependent on the
maximum window size Q. The ItemSets hash table contains
a maximum of Q entries, the Ranges array has a constant
size of Q entries and the Counts doubly linked list contains
a maximum of Q count nodes. It follows that the space
complexity of the whole HL-HITTERS data structure is O(Q).

III. EXPERIMENTAL EVALUATION

It is clear from the previous analysis that the computational
complexity of the algorithms presented is overall constant
time whp. However, this does not guarantee an acceptable
level of performance if in practice the constant time required
is too high. We have created a router-like scenario, and have
performed experiments to gauge the actual performance of the
proposed algorithms. We have to note that, to our knowledge,
there exists no other algorithm for calculating the heaviest-k
hitters exactly, which also provides close to constant time
performance. Therefore, we have implemented a naive but
efficient as far as possible algorithm to find the heaviest-k
hitter. This algorithm, each time the heaviest hitter is requested,
creates a hash-table, and records within it the counts for each
itemset. As it does this, it keeps track of the running heaviest
hitter. However, it is clear that this algorithm has an O(Q) time
complexity. As each item arrives for processing, it is recorded
in the counts and immediately afterwards the heaviest hitter
is queried. This represents the worst case scenario, where the
query operation is performed at each time step. Furthermore,
in the experiments performed, we restricted ourselves to
finding the top heaviest hitter only, i.e., k = 1, in order not
to significantly disadvantage the direct counting algorithm.

A. Experiment Setup

The implementation has been performed using C++, with
standard C++ versions of the building blocks, as described
in section II-A. We used the G++ compiler with all the
optimizations enabled (−O3) for our specific architecture.
The experiments were executed on an Intel Quad Core Q9300
processor with 4GB of main memory, using one dedicated
core for the execution of the experiments. The operating
system used was Arch Linux, with the 2.6.36 version kernel.
For each result point 10 identical sequential executions of
the experiment were performed to remove any bias.

B. Results

The results of the experiments are displayed in Figures 2
and 3. Figure 2 shows the results of the comparison between
HL-HITTERS and the direct counting algorithm. As predicted,
the direct counting algorithm exhibits performance which is
a linear function of Q. At the same time, HL-HITTERS
maintains constant performance in accordance to O(1). It
is noteworthy to examine the absolute numbers as well.
The HL-HITTERS algorithm has an approximate processing
time per packet of 0.3µs. This means that despite using
general purpose building blocks and no hardware-based
content addressable memory or specialized CPUs, we can
process approximately 3.3 million packets per second using
our implementation. According to [11] IP packet sizes vary
between 40bytes and 1500bytes, with strong polarization
tendencies. Given those values, we can achieve a throughput
between 1Gbit/sec and 40Gbit/sec. We stress the fact
that this performance is achievable without any specialized



0 100 200 300 400 500
Queue Length

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

0.2
0.4
0.6
0.8

P
ro

ce
ss

in
g

tim
e

pe
rp

ac
ke

t(
µ

se
c)

Processing time per packet (µsec) vs Queue Length

HL-Hitters
DirectCounting

Figure 2. Performance of HL-HITTERS vs direct counting for different Q
queue lengths. Measured in mean processing time per packet (shown in µs).

Queue Length

100
200

300
400

500

Flow
Cou

nt

20000

40000

60000

80000

100000 P
ro

ce
ss

in
g

tim
e

pe
r p

ac
ke

t (
µ

se
c)

0.0

0.1

0.2

0.3

0.4

0.5

Processing time per packet (µsec)
contrasting Queue Length vs Flow Count

Queue Length

100
200

300
400

500

Flow
Cou

nt

20000

40000

60000

80000

100000 P
ro

ce
ss

in
g

tim
e

pe
r p

ac
ke

t (
µ

se
c)

0.0

0.1

0.2

0.3

0.4

0.5

Processing time per packet (µsec)
contrasting Queue Length vs Flow Count

Figure 3. Performance of HL-HITTERS for different Q queue lengths and
number of flows. Measured in mean processing time per packet (shown in µs).

hardware as would typically exist in an Internet backbone router.
Furthermore, preliminary performance profiling has shown that
approximately 45% of the processing time is spent on the hash-
table operations and approximately 20% on the doubly linked
list operations. Since both would heavily benefit from optimiza-
tions on a hardware router, we are confident that significantly
higher performance is attainable under such conditions.

The data plot in Figure 3 presents how the per-packet
processing time varies with both the length of the queue Q and
the number of different flows in the system. This experiment
aims to examine whether an increase in the queue length or
an increase in the number of flows (leading to more collisions
in the hash-table) will impact performance. To the extent that
we could see, neither of those factors impacted performance.

IV. DISCUSSION

Our work on the problem of the heaviest-k and lightest-k
hitters in a sliding-window data stream has resulted in
a relatively simple data structure and an efficient set of
algorithms for its operations. These in tandem allow us
to achieve constant time updates and queries, something
which, to our knowledge, has been achieved for the first
time. Moreover, and for some applications more importantly,
the performance of this scheme has been verified to be high
enough to be used in practical applications. Lastly, the fact that
we haven’t presented a highly optimized and hardware assisted
implementation allows us to predict much better performance
in practical application where these additional enhancements
would be pursued. As we have described, the performance
of this algorithms is dependent only on the available memory,
and especially the memory for the hash-table.

An interesting idea beyond these results would be to extend
this mechanism to incorporate the size of the packets as well,
not only their number. This would allow us to make decisions
based on the quantity of data that an itemset is responsible
for, rather than how many items it is generating.

ACKNOWLEDGMENT

This research has received funding from the E.U. 7th
Framework Programme [FP7 2007-2013] under grant
agreement no 264226: SPace Internetworking CEnter – SPICE.
We would like to thank Dimitrios Fotakis for our insightful
discussions on efficient hashing.

REFERENCES

[1] R. Hung, L. Lee, and H. Ting, “Finding frequent items over
sliding windows with constant update time,” Inf. Process. Lett.,
vol. 110, p. 257260, Mar. 2010.

[2] R. Boyer and J. Moore, “A fast majority vote algorithm,”
Institute for Computer Science, University of Texas, Technical
Report ICSCA-CMP-32, 1981.

[3] E. Demaine, A. Lpez-Ortiz, and J. Munro, “Frequency
estimation of internet packet streams with limited space,”
Algorithms-ESA 2002, p. 1120, 2002.

[4] R. M. Karp, S. Shenker, and C. H. Papadimitriou, “A simple
algorithm for finding frequent elements in streams and bags,”
ACM Trans. Database Syst., vol. 28, no. 1, pp. 51–55, 2003.

[5] H. Liu, Y. Lin, and J. Han, “Methods for mining frequent items
in data streams: an overview,” Knowledge and Information
Systems, vol. 26, pp. 1–30, 2011.

[6] S. Muthukrishnan, “Data streams: algorithms and applications,”
Found. Trends Theor. Comput. Sci., vol. 1, p. 117236, Aug. 2005.

[7] M. Dietzfelbinger and F. M. auf der Heide, “A new universal
class of hash functions and dynamic hashing in real time,” in
ICALP, ser. LNCS, P. M., Ed. Springer Berlin / Heidelberg,
1990, vol. 443, pp. 6–19.

[8] Y. Arbitman, M. Naor, and G. Segev, “De-amortized cuckoo
hashing: Provable Worst-Case performance and experimental
results,” in ICALP, ser. LNCS, 2009, vol. 5555, pp. 107–118.

[9] K. Pagiamtzis and A. Sheikholeslami, “Content-addressable
memory (CAM) circuits and architectures: A tutorial and
survey,” IEEE JSSC, vol. 41, no. 3, p. 712727, 2006.

[10] “Boost::Unordered,” Jan. 2011. [Online]. Available:
http://www.boost.org/doc/html/unordered.html

[11] R. Sinha, C. Papadopoulos, and J. Heidemann,
“Internet packet size distributions: Some observations,”
USC/Information Sciences Institute, Tech. Rep. ISI-TR-
2007-643, May 2007. [Online]. Available: http://www.isi.edu/
johnh/PAPERS/Sinha07a.html


